p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8.6D4, C22⋊2Q16, C23.44D4, (C2×Q16)⋊1C2, (C2×C4).25D4, C4.23(C2×D4), C2.4(C2×Q16), Q8⋊C4⋊5C2, C4⋊C4.3C22, C22⋊C8.3C2, (C2×C8).2C22, C22⋊Q8.2C2, C2.12C22≀C2, (C2×C4).85C23, C22.81(C2×D4), (C2×Q8).3C22, (C22×Q8).6C2, C2.7(C8.C22), (C22×C4).46C22, SmallGroup(64,132)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊Q16
G = < a,b,c,d | a2=b2=c8=1, d2=c4, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 121 in 74 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, Q8, Q8, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C2×Q8, C2×Q8, C22⋊C8, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, C22⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C8.C22, C22⋊Q16
Character table of C22⋊Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 5)(2 29)(3 7)(4 31)(6 25)(8 27)(9 13)(10 18)(11 15)(12 20)(14 22)(16 24)(17 21)(19 23)(26 30)(28 32)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 11 5 15)(2 10 6 14)(3 9 7 13)(4 16 8 12)(17 26 21 30)(18 25 22 29)(19 32 23 28)(20 31 24 27)
G:=sub<Sym(32)| (1,5)(2,29)(3,7)(4,31)(6,25)(8,27)(9,13)(10,18)(11,15)(12,20)(14,22)(16,24)(17,21)(19,23)(26,30)(28,32), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,5,15)(2,10,6,14)(3,9,7,13)(4,16,8,12)(17,26,21,30)(18,25,22,29)(19,32,23,28)(20,31,24,27)>;
G:=Group( (1,5)(2,29)(3,7)(4,31)(6,25)(8,27)(9,13)(10,18)(11,15)(12,20)(14,22)(16,24)(17,21)(19,23)(26,30)(28,32), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,5,15)(2,10,6,14)(3,9,7,13)(4,16,8,12)(17,26,21,30)(18,25,22,29)(19,32,23,28)(20,31,24,27) );
G=PermutationGroup([[(1,5),(2,29),(3,7),(4,31),(6,25),(8,27),(9,13),(10,18),(11,15),(12,20),(14,22),(16,24),(17,21),(19,23),(26,30),(28,32)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,11,5,15),(2,10,6,14),(3,9,7,13),(4,16,8,12),(17,26,21,30),(18,25,22,29),(19,32,23,28),(20,31,24,27)]])
C22⋊Q16 is a maximal subgroup of
C23⋊Q16 C4⋊C4.6D4 C24.12D4 C24.103D4 C24.178D4 C24.106D4 Q8.(C2×D4) (C2×Q8)⋊17D4 C42.226D4 C42.231D4 C42.235D4 C42.355C23 C42.361C23 C23⋊3Q16 C24.123D4 C24.128D4 C24.129D4 C4.162+ 1+4 C4.172+ 1+4 C42.269D4 C42.273D4 C42.276D4 C42.409C23 C42.411C23 SD16⋊6D4 SD16⋊8D4 Q16⋊9D4 SD16⋊3D4 Q16⋊4D4 SD16⋊10D4 D4×Q16 C42.465C23 C42.47C23 C42.48C23 C42.51C23 C42.476C23 C42.477C23 A4⋊2Q16 C23.14S4 Q8.1S4
(C2×C2p)⋊Q16: (C2×C4)⋊Q16 C42.224D4 C42.267D4 Dic6.32D4 Dic6.37D4 (C2×C6)⋊8Q16 C22⋊Dic20 Dic10.37D4 ...
D2p⋊Q16: D4⋊5Q16 D6⋊Q16 D6⋊5Q16 D10⋊4Q16 D10⋊5Q16 D14⋊4Q16 D14⋊5Q16 ...
C22⋊Q16 is a maximal quotient of
C23⋊Q16 C24.17D4 C4⋊C4.20D4 Q8⋊Q16 Q8.Q16 D4.3Q16 Q8⋊3Q16 Q8⋊4Q16 C24.155D4 C23.37D8 Q8⋊(C4⋊C4) C24.160D4 C23⋊2Q16 (C2×Q8)⋊Q8 C24.86D4 C4⋊C4.95D4 C4⋊C4⋊Q8
(C2×C2p)⋊Q16: (C2×C4)⋊Q16 (C2×C4)⋊9Q16 (C2×C4)⋊2Q16 Dic6.32D4 Dic6.37D4 (C2×C6)⋊8Q16 C22⋊Dic20 Dic10.37D4 ...
D2p⋊Q16: D4⋊Q16 D4⋊3Q16 D4⋊4Q16 D6⋊Q16 D6⋊5Q16 D10⋊4Q16 D10⋊5Q16 D14⋊4Q16 ...
Matrix representation of C22⋊Q16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
6 | 6 | 0 | 0 |
14 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
13 | 0 | 0 | 0 |
4 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[6,14,0,0,6,0,0,0,0,0,0,16,0,0,1,0],[13,4,0,0,0,4,0,0,0,0,1,0,0,0,0,16] >;
C22⋊Q16 in GAP, Magma, Sage, TeX
C_2^2\rtimes Q_{16}
% in TeX
G:=Group("C2^2:Q16");
// GroupNames label
G:=SmallGroup(64,132);
// by ID
G=gap.SmallGroup(64,132);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,199,362,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=1,d^2=c^4,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export